Persistence of random walk records

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistence of Random Walk Records

We study records generated by Brownian particles in one dimension. Specifically, we investigate an ordinary random walk and define the record as the maximal position of the walk. We compare the record of an individual random walk with the mean record, obtained as an average over infinitely many realizations. We term the walk “superior” if the record is always above average, and conversely, the ...

متن کامل

Quantum persistence: a random-walk scenario.

In this paper we extend the concept of persistence, well defined for classical stochastic dynamics, to the context of quantum dynamics. We demonstrate the idea via quantum random walk and a successive measurement scheme, where persistence is defined as the time during which a given site remains unvisited by the walker. We also investigated the behavior of related quantities, e.g., the first-pas...

متن کامل

Universal Persistence for Local Time of One-dimensional Random Walk

We prove the power law decay p(t, x) ∼ t−φ(x,b)/2 in which p(t, x) is the probability that the fraction of time up to t in which a random walk S of i.i.d. zero-mean increments taking finitely many values, is non-negative, exceeds x throughout s ∈ [1, t]. Here φ(x, b) = P(Lévy(1/2, κ(x, b)) < 0) for κ(x, b) = √ 1−xb− √ 1+x √ 1−xb+ √ 1+x and b = bS > 0 measuring the asymptotic asymmetry between p...

متن کامل

A Random Walk with Exponential Travel Times

Consider the random walk among N places with N(N - 1)/2 transports. We attach an exponential random variable Xij to each transport between places Pi and Pj and take these random variables mutually independent. If transports are possible or impossible independently with probability p and 1-p, respectively, then we give a lower bound for the distribution function of the smallest path at point log...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R&nbsp;is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2014

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8113/47/25/255002